SNAP 2017. Laplace's equation and conformal maps.

Problem Set 1

1. Consider the holomorphic map $w = z^2$. For a, b > 0, what are the images of the hyperbolae

$$x^2 - y^2 = a, \quad 2xy = b$$

under this map? (We are writing z = x + iy).

2. Let a, b be nonzero real numbers. Show that the map w = 1/z transforms the vertical line x = a to a circle through the origin centered at $(\frac{1}{2a}, 0)$. What about horizontal lines y = b?

3. Recall that the holomorphic function $\sin z$ is defined by $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$. Recall also that $e^z = e^x e^{iy} = e^x (\cos y + i \sin y)$.

(a) Show that $\sin z = \sin x \cosh y + i \cos x \sinh y$, where we recall that hyperbolic sine and cosine are defined by

$$\sinh y = \frac{e^y - e^{-y}}{2}, \quad \cosh y = \frac{e^y + e^{-y}}{2}.$$

- (b) For $a, b \neq 0$, show that the lines x = a and y = b are transformed into hyperbolae and ellipses respectively, and find their equations. (Hint: use the identities $\cosh^2 x - \sinh^2 x \equiv 1$ and $\sin^2 x + \cos^2 x \equiv 1$.)
- 4. Find a conformal map from the upper half plane $\{y > 0\}$ onto $\{w \in \mathbb{C} \mid |w| > 1\}$.
- 5. Find the Möbius transformation $f(z) = \frac{az+b}{cz+d}$ which maps 1 to 1, -1 to -1 and *i* to 0.
- 6. Without computing the map explicitly, find the image of the open unit disk $\{|z| < 1\}$ under the Möbius transformation that maps -1 to -i, 1 to 2i and i to 0.
- 7. (a) Find a holomorphic surjection from the upper half plane onto \mathbb{C} .
 - (b) Why is there no holomorphic surjection from C onto the upper half plane? (*Hint: Liouville's Theorem says that a bounded holomorphic map on* C *must be constant.*)

- 8. Consider the Joukowsky map $f(z) = \frac{1}{2}\left(z + \frac{1}{z}\right)$.
 - (a) Where is f(z) conformal? (Recall that a map g(z) is conformal at z if it is holomorphic at z and $g'(z) \neq 0$.)
 - (b) Show that for $w \in \mathbb{C}$, the equation f(z) = w has exactly two solutions z except when $w = \pm 1$.
 - (c) Show that w = f(z) is a bijective conformal map from the half disk $\{|z| < 1, \text{ Im } z > 0\}$ to the lower half plane $\{w \in \mathbb{C} \mid \text{Im } w < 0\}$.
- 9. Using the Joukowsky map, composed with other conformal maps, find the image of the semi-infinite vertical strip $S = \{(x, y) \mid |x| < \pi/2, y > 0\}$ under the map $w = \sin z$. What are the images of the horizontal line segments y = c inside S under the map?